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Resonances and Time Reversal Operator in Rigged
Hilbert Spaces
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We present a formulation of time reversal for quantum systems with resonances.
This interpretation follows with the idea that these systems are intrinsically
irreversible. This formulation is made in terms of rigged Hilbert spaces.

1. INTRODUCTION

This paper discusses the role of time reversal in physical systems with

resonances. As these systems are commonly presented as examples of irrevers-

ible systems [26±29, 2, 4, 5], it is of interest to study them in relation to

time reversal.

Based on the work of Wigner [32, 33], Bohm has presented a rather
ellaborate theory on this subject [11, 14]. He deals with nonrelativistic quan-

tum resonances produced by quantum scattering. The aim of the present paper

is to discuss some aspects of the work of Bohm with mathematical rigor and

to complete it.

Resonant scattering is a quantum scattering process which produces

resonances. This is extensively discussed in standard books of scattering
theory and quantum mechanics as well as in many papers [6, 25, 8±11, 13,

5, 2].

In resonant scattering, resonances are usually defined, in the energy

representation, as pairs of poles of the analytic continuation of the S-matrix

to the second sheet of a two-sheeted Riemann surface [6]. This description

is derived from causality. However, in contrast to what is usual in quantum
mechanics, it is not formulated in terms of state vectors. This is very natural
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when we describe elementary particles. In fact, decaying particles are elemen-

tary particles. They only differ from stable particles in the value of a parameter:

the inverse of the mean lifetime. This is zero for stable particles and nonzero

for decaying ones. Thus, decaying particles should be properly described by

a wave function in the same sense as stable particles are.

However, most decaying particles have a decay mode which is purely

exponential. A purely exponential decaying vector must have a Breit±Wigner

energy distribution which is nonzero for all values of the energy [6, 16]. This

is incompatible with the semiboundedness of the Hamiltonians. Therefore,

no vector in Hilbert space can describe an exponentially decaying state.

There have been, however, several attempts to construct such wave

functions as vector states. These vector states are usually called Gamow

vectors, honoring G. Gamow, who make the first attempt toward a consistent

definition of them [18]. A good state vector describing an exponentially

decaying particle should fulfill two conditions:

(i) It should be an eigenvector of the total Hamiltonian (the Hamiltonian

describing the interaction in the scattering process) with a complex eigenvalue,

which coincides with the S-matrix pole. Its real part should be the resonance

energy ER and its imaginary part the half-width G /2 (twice the inverse of the

mean lifetime). This again shows that this state cannot belong to a Hilbert

space, since Hamiltonians on Hilbert space are self-adjoint operators that

have real eigenvalues only.

(ii) It should show an exponential decay time behavior (or exponential

growth if we are speaking about the process of creation of a resonance)

starting from the instant in which the resonance has been prepared and starts

to decay.

It was realized some time ago by Bohm [7] that both conditions can be

fulfilled if instead of using Hilbert spaces as a framework for quantum

mechanics, we use rigged Hilbert spaces (RHS). RHS have been used in

order to give mathematical rigor to the Dirac formulation of quantum mechan-

ics. The need for this kind of structure in quantum mechanics came originally

from the postulate of Dirac that any observable has a complete set of eigenvec-

tors. This postulate cannot be implemented in Hilbert space (many observables

have no eigenvectors in Hilbert space, like the momentum and position

operators), but it can in the RHS idealization of QM, through a well-known

theorem due to Gelfand and Maurin.

The definition and properties of RHS have been presented many times

[19, 20, 7, 30, 23, 1, 24]. The construction of Gamow vectors for single- or

multiple-pole resonances (resonances described by a pair of simple or multiple

poles of the S-matrix, respectively) can be found in ref. 17 and the references

quoted therein and here.
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According to previous work, resonance scattering processes can be

described by two RHS:

F + , *ac , 3 F + (1.1)

for the process of formation of a resonance. This process takes place at

negative values of time, where the origin of time is conventionally settled

as the instant at which the process of formation of a resonance is completed

and starts to decay.

The second RHS describes the process of decay itself and is given by

F 2 , *ac , 3 F 2 (1.2)

In both RHS the Hilbert space *ac represents the space of scattering states

of the total Hamiltonian H. In fact, ª acº stands for absolutely continuous.

On *ac, H has absolutely continuous spectrum only.

Based on the work of Ludwig [21, 22], Bohm gave a further interpretation
to these RHS [6]. Although the state vectors in F 6 evolve with the interaction

dynamics given by H, they have a close connection to free state vectors

through the MoÈ ller operators. In this sense, state vectors in F + come from

free vectors that have been prepared as free before the interaction took place.

Analogously, state vectors in F 2 will be observed as free after the interaction
takes place. We can prepare incoming states, but after scattering we observe

the outgoing states. Thus, it seems natural to assume that the RHS (1.1) gives

the set of preparable states and (1.2) the set of observables. In this sense,

the concept of state is prior to the concept of observable. This implies the

existence of an arrow of time [12].

As we shall see in Section 2, the standard time reversal operator trans-
forms the RHS (1.1) into (1.2) and vice versa. If we accept the above

interpretation, this would imply that the time reversal operator transforms

states into observables and vice versa, which is unacceptable, since it should

transform states into states and observables into observables.

Due to this circumstance, Bohm pointed out that for a proper description

of the time reversal operation for irreversible systems like quantum systems
with resonances, the standard time reversal operator is not sufficient [11].

However, Wigner proposed four types of time reversal operator based on the

study of the representations of the PoincareÂgroup extended by inversions

[32, 33]. The first type is the standard one, but the other three imply a

doubling of spaces. The ª goodº time reversal operator is one of the latter,

and therefore a doubling of spaces in our formalism for resonances is needed.
One of the goals of the present paper is to make a mathematical presentation

of this doubling.

Now, let us recall very briefly some of the properties of the (single-

pole) Gamow vectors and assume that the analytic continuation of the S
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matrix has a simple pole (on the second sheet) at the points zR 5 ER 2 i G /

2 and z*R 5 ER 1 i G /2. Following refs. 17 and 3, we denote the Gamow

vectors corresponding to this resonance as ) f0 & and ) fÄ0 & . They have the
following properties [17]:

(i) The Gamow vectors are functionals:

) f0 & P 3 F 2 and ) fÄ0 & P 3 F + (1.3)

(ii) They are generalized eigenvectors of the total Hamiltonian H (for

a definition of generalized eigenvector and eigenvalue, see ref. 12):

H ) f0 & 5 zR ) f0 & ; H ) fÄ0 & 5 z*R ) fÄ0 & (1.4)

(iii) The time evolution operator e 2 itH can be continuously extended to
3 F 2 for positive values of time and to 3 F + for negative values of time. The

continuity of the extensions refers to the weak topology [31]. In addition,

we have

e 2 itH ) f0 & 5 e 2 itzR ) f0 & 5 e 2 itEe 2 G t ) f0 & for t . 0 (1.5)

and

e 2 itH ) fÄ0 & 5 e 2 itz*R ) fÄ0 & 5 e 2 itEe G t ) fÄ0 & for t , 0 (1.6)

The action of e 2 itH on ) f0 & for t , 0 and on ) fÄ0 & for t . 0 is, however,

not defined.

From this latter property, we can see that the group giving the evolution

of states and observables splits into two semigroups. This splitting is a
consequence of the choice of F 6 and the properties of Hardy functions. The

choice of Hardy functions is related to a causality condition [12], so that the

splitting is also related to causality. The need for two RHS is due to the

existence of two different processes in resonance scattering: formation and

decay. The process of formation takes place in the past, the process of decay

in the future. This formulation implies the existence of an arrow of time [12].
As we shall see in Section 2, formation and decay are related through the

time reversal operator. As discussed by several authors [26±29, 2, 5, 12],

this splitting shows that scattering processes with resonances are irrevers-
ible processes.

The present paper is divided in three following sections and one appen-
dix. In the next section, we discuss the effect of time reversal on Gamow

vectors in the case of single-pole resonances. In Section 3 we present the

idea of doubling of spaces. The discussion for the more general multiple-

pole resonances is left for Section 4. In the Appendix we present some general

aspects of the time reversal operation.
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2. SINGLE-POLE RESONANCES: THE STANDARD CASE

In the present section we present the effect of the time reversal operation

for systems having single-pole resonances, which is the most common case.

This means that the poles of the S-matrix at the points zR and z*R are simple.

All the concepts used here are presented in the standard literature on

the subject, in particular in refs. 6, 13, and 17. The notation does not differ

essentially from that in ref. 17, although there exist a couple of differences:
(i) The restriction of the spaces, which are intersections of Hardy spaces

with the Schwartz space, to the positive semiaxis is here denoted by

*2
6 ù S ) R 1

The plus sign stands for Hardy functions on the upper half-plane and the minus

sign for Hardy functions on the lower half-plane. S is the Schwartz space.

(ii) The extensions of the evolution operator e 2 itH are called 8 2 (t) if

t . 0 and 8+(t) if t , 0. These are the two semigroups discussed in the

Introduction. The former is defined and continuous on 3 F 2 and the latter
on 3 F +.

(iii) For simplicity, we always work with a spherically symmetric poten-

tial and have particles without spin and other possible degress of freedom.

We restrict ourselves to a zero value of the angular momentum and we

represent the Hilbert space of states *0 (for l 5 0). In this context, the space

of our scattering states *ac is a subspace of *0.
Let us recall that the unitary operators given by V 6 diagonalize the total

Hamiltonian H (or its restriction to its absolutely continuous space *ac, if H
has bound states or continuous singular spectrum), in the sense that these

operators give a unitary equivalence between H and the multiplication opera-

tor on L2( R +). They are a product of the inverses of the Mù ller operators
times the operator U that diagonalizes the free Hamiltonian, V 6 5 V 2 1

6 U.

Standard Case. For s waves ( j 5 0 and for particles without spin s 5
0), the simplest choice for the time reversal operation is e T 5 e I 5 1, and

therefore AT 5 C in the energy representation. Since the mapping C transforms
any function on E into its complex conjugate, it maps

C: *2
6 ù S ) R 1 j *2

7 ù S ) R 1 (2.1)

Moreover, we can show that this map is continuous.

Our next goal is to define time reversal operators AT 6 on F 6 . These

operators should be equivalent to C and the equivalence should be given by

V 6 . Their definition is

AT 6 : 5 V ²
7 CV 6 (2.2)
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This definition makes commutative the following diagram:

C
*2

6 ù S ) R 1 Ð Ð ® *2
7 ù S ) R 1

½
½
¯

½
½
¯

V ²
7 5 V 2 1

7 V ²
7 5 V 2 1

6

F 7 F 6±Ð Ð Ð Ð Ð ®
AT 7

These operators have the following properties:

1. AT 6 are continuous antilinear mappings from F 6 onto F 7 .

2. They can be extended to (continuous) antiunitary mappings from *0

into itself (or *ac if H has eigenvectors in *0).
3. Their adjoints are given by

A ²
T 6 5 [V ²

7 CV 6 ] ² 5 V ²
6 CV 7 5 AT 7 (2.4)

so that they are adjoints of each other.

4. They are inverses of each other:

TT 1 AT 2 5 V ²
2 CV+V

²
1 CV 2 5 I on F 2 (2.5)

Analogously, AT 2 AT+ 5 I on F +.

Now, let us assume that A is a densely defined, continuous antilinear

operator on * with the following property: There are two RHS, F , * ,
3 F and C , * , 3 C , such that A ² maps continuously C into F . Then,

A can be extended by continuity to 3 F using the following formula:

^ A ² c ) F & 5 ^ AF ) c & ; " F P 3 F , " c P C (2.6)

Thus, A is a weakly continuous mapping from F 3 into C 3 . The proof is

this result goes exactly as the proof for the linear case, which is given in

any book on topological vector spaces.
It is quite simple to apply these ideas to our particular case, after making

the identification F 5 F 6 , C 5 F 7 , A 5 AT 6 , and A ² 5 AT 7 . Thus, we

have the following continuous antilinear extensions:

AT 6 : 3 ( F 6 ) j 3 ( F 7 ) (2.7)

They are one-to-one onto mappings with continuous inverses that indeed
extend AT 6 as originally defined in (2.2). For simplicity, we assign the same

notation to these operators and their respective extensions.

It is interesting to find the images of ) E 6 & and the Gamow vectors by

AT 6 . To this end, let us consider two arbitrary vectors w 6 P F 6 . Their wave

functions in the energy representation are given by
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w 7 (E ) 5 ^ E 6 ) w 6 & 5 (V 6 w 6 )(E ) P *2
7 ù S ) R 1 (2.8)

Using the definition of AT 6 , we have

[AT 6 w 6 ](E ) 5 [V 7 AT 6 w 6 ](E ) 5 C[V 6 w 6 ](E ) 5 C w 7 (E ) 5 [ w 7 (E )]*

(2.9)

Hence,

^ E 7 ) AT 6 w 6 & 5 (AT 6 w 6 )(E ) 5 [ w 7 (E )]* 5 ^ w 6 ) E 6 & (2.10)

According to (2.4) and (2.6), we finally obtain

^ E 7 ) AT 6 w 6 & 5 ^ w 6 ) AT 7 ) E 7 & 5 ^ w 6 ) E 6 & (2.11)

and then

AT 6 ) E 6 & 5 ) E 7 & (2.12)

Take now the Gamow vectors ) z 2
R & 5 ) f0 & and ) z* 1

R & 5 ) fÄ0 & . From (2.6)

one has

^ w + ) AT 2 ) f0 & 5 ^ f0 ) AT 1 w + & 5 (AT 1 w +)(zR) 5 [ w +(z*R )]*

5 ^ fÄ0 ) w + & * 5 ^ w + ) fÄ0 & (2.13)

Since (2.13) is valid for any w + P F +, one finally obtains

AT 2 ) f0 & 5 ) fÄ0 & (2.14)

Analogously

AT 1 ) fÄ0 & 5 ) f0 & (2.15)

Next, we show a property that is related to the semigroup splitting: take

eiHt with t . 0. We know that eiHtF 2 , F 2 . Analogously, if t , 0, we have
eiHtF + , F +. Now, consider (t . 0)

AT 1 eiHtAT 2 5 V ²
2 CV+eiHtV ²

1 CV 2

5 V ²
2 CeitECV 2 5 V ²

2 e 2 itEV 2 5 ei( 2 t)H (t . 0) (2.16)

For t , 0 we get

AT 2 eiHtAT 1 5 ei( 2 t)H (2.17)

We see that the operators AT 6 transform one semigroup into the other.

After the above formulas, we can extend these formulas to the duals by

duality [13, 17]. If t . 0
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AT 1 8 2 (t)AT 2 5 8+( 2 t) (2.18)

and if t , 0

AT 2 8+(t)AT 1 5 8 2 ( 2 t) (2.19)

Remark. We could expect that the operators AT 6 are indeed the same in

some sense. That is true. As a matter of fact, their extensions to *0 (or *ac)

coincide. The proof of this statement is rather simple. Write

A2
T 1 5 V ²

2 CV+V
²
2 CV+ (2.20)

Since V 6 5 U V ²
6 , one has

A2
T 1 5 V 2 U ² CU V ²

1 V 2 U ² CU V ²
1 (2.21)

where V 6 are the Mù ller operators and U diagonalizes the free Hamiltonian

(see the beginning of this section). The S operator is S 5 V ²
2 V +, with

USU 2 1 5 USU ² 5 S(E ) [ 5 S(E 1 i0), E . 0] (2.22)

S ² 5 V ²
1 V 2 Þ US ² U ² 5 (USU ² ) ² 5 S*(E ) (2.23)

Therefore,

A2
T 1 5 V 2 U ² CS*(E )CU V ²

1

5 V 2 U ² S(E )U V ²
1 5 V 2 S V ²

1

5 V 2 V ²
2 V + V ²

1 5 I (2.24)

which is the identity on *0 or *ac. The same is true for AT 2 .

We have seen that AT+ is an inversible bounded operator such that AT+ 5
A 2 1

T 1 on *0 or *ac. Since A 2 1
T 1 and AT 2 coincide on the dense subspace F 2 ,

they are equal on this Hilbert space and we have that AT 2 5 A 2 1
T 1 5 AT+.

3. SINGLE-POLE RESONANCES: THE CASE e T 5 e I 5 1
(s WAVES)

From the point of view of Ludwig [21, 22] and Bohm [11, 12, 14], AT 6

are not good time reversal operators because they transform preparable objects

into observable objects and vice versa. In other words, they transform states

into observables and vice versa. In order to avoid this difficulty, Bohm
[11, 14] suggested using another definition of the time reversal operation.

Following Wigner [32, 32], there are three other possibilities of defining the

time reversal operator. All four choices are listed in the Appendix. Bohm

uses the fourth in this list, because it does not reverse parity. Based on refs.
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11 and 14, we present a mathematical formulation of time reversal with

space doubling.

To begin with, let us consider the following pair of RHS:

*2
6 ù S ) R 1 ^ C 2 , L2( R +) ^ C 2 , 3 (*2

6 ù S ) R 1 ) ^ C 2 (3.1)

where C 2 denotes the two-dimensional vector space of column vectors whose

entries are complex numbers. Then the elements of each space of the triplet

can be expressed as two-dimensional vectors whose entries belong to the

space in the left-hand side of the tensor product. Now, the time reversal
operator in the energy representation is given by

# : 5 1 0 C

2 C 0 2 (3.2)

This operator is antilinear and continuous from *2
6 ù S ) R 1 ^ C 2 into

*2
7 ù S ) R 1 ^ C 2, since C represents complex conjugation. By duality, it can

be extended to a continuous antilinear mapping from 3 (*2
6 ù S ) R 1 ) ^ C 2

onto 3 (*2
7 ù S ) R 1 ) ^ C 2.

The spaces *2
6 ù S ) R 1 ^ C 2 each have two distinguished subspaces,

which are

S 1
6 5 *2

6 ù S ) R 1 ^ 1 a
0 2 and S 2

6 5 *2
6 ù S ) R 1 ^ 1 0

b 2 (3.3)

where a and b are arbitrary complex numbers. We have, therefore, two new

RHS that can be written in the following form:

S 6
6 , L2 6 ( R +) , 3 ( S 6

6 ) (3.4)

where

L2+( R +) 5 L2( R +) ^ 1 a
0 2 ; L2 2 ( R +) 5 L2( R +) ^ 1 0

b 2 (3.5)

One can easily prove that the duals can be written in the form

3 ( S 1
6 ) 5 3 (*2

6 ù S ) R 1 ) ^ 1 a
0 2 and 3 ( S 2

6 ) 5 3 (*2
6 ù S ) R 1 ) ^ 1 0

b 2
(3.6)

Also, it is not difficult to show the following property:

# S 1
6 5 S 7

7 (3.7)
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Needless to say, # in the above formula represent a continuous antilinear

bijective (one-to-one and onto) mapping between the corresponding spaces.

Therefore, it can be continuously extended by duality and its action on the
duals is given by

# 3 ( S 6
6 ) 5 3 ( S 7

7 ) (3.8)

Remark. Note that #2 5 2 I 5 e T I , where I represents the identity on
3 ( S 6

6 ).

Now, let us consider the operators given by

D 6 5 V 6 ^ I (3.9)

where I is the identity on C 2. Formally

D 6 5 1 V 6 0

0 V 6 2 ; D ²
6 5 D 2 1

6 5 1 V ²
6 0

0 V ²
6 2 (3.10)

D 6 maps *ac ^ C 2 onto L2( R +) ^ C 2.

Remark. In order to clarify the notation, we propose to replace the

superscript signs by the superscript r with r 5 1 , 2 . Then, one writes,

S r
6 , etc. With this notation, we intend to make it clear that the signs above

and below are independent.

Let us define the following spaces:

F 6 ,r : 5 D ²
6 S r

7 (3.11)

They are subspaces of *ac ^ C 2.

As in the previous cases, D 6 and their respective inverses D ²
6 can be

continuously extended by duality to the dual spaces. It is also obvious that

F 6 ,r 5 1 5 F 6 ^ 1 a
0 2 ; F 6 ,r 5 2 5 F 6 ^ 1 0

b 2 (3.12)

We are now in a position to introduce the time reversal operators for

our particular situation. They can be defined as

!T 6 : 5 6 D ²
7 #D 6 (3.13)

These two operators have properties that are similar to those of AT 6 . We list

here these properties without proofs, since these proofs do not differ much
from those for AT 6 :

1. AT 6 are continuous antilinear mappings from F 6 ,r onto F 7 , 2 r, respec-

tively. They can be continuously extended as antilinear mappings between

the respective duals.
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2. They are adjoints of each other:

! ²
T 6 5 !T 7 (3.14)

3. These operators are defined on the whole space *ac ^ C 2 on which

they are antiunitary. In addition, they are inverses of each other:

!T 1 !T 2 5 I ; !T 2 !T 1 5 I (3.15)

4. On the Hilbert space *ac ^ C 2, we have

!2
T 6 5 2 I Þ !T 2 !T 1 !T 1 5 2 !T 2 Þ !T 1 5 2 !T 2 (3.16)

This is a consequence of the definition chosen in (3.13) for !T 2 (with minus
sign), which has its origin in the fact that # ² 5 2 #. If we redefine !T 2

without the minus sign in (3.13), we have

! ²
T 6 5 2 !T 7 ; !T 1 !T 2 5 2 I ; !T 2 !T 1 5 2 I (3.17)

which yields

!T 1 5 !T 2 (3.18)

We can choose either the possibility (3.16) or (3.18). The choice (3.18)

has the advantage of having a unique time reversal operator. The distinction

between !T+ and !T 2 indicates the restriction to the unique time reversal
operator to F 6 ,r. This choice has a little inconvenience as it causes the

appearance of a minus sign without physical meaning in the time reversal

formulas for the semigroups, as we shall see later.

The importance of the above construction lies in the possibility of

extending the time reversal operator to the duals in which interesting general-
ized state vectors live. Such is the case of Gamow vectors, so that the above

construction allows us to apply time reversal to these objects. In our particular

case, Gamow vectors are slightly more complicated structures than in the

standard case studied in the first part of the present section. To begin with,

let us consider the state vectors having a definite value of the energy (also

called Dirac kets). They are generalized eigenvectors of the total Hamiltonian
with positive eigenvalue E . 0. In our case, they have the following form:

) E 6 ; r 5 1 & 5 1 ) E
6 &
0 2 P 3 ( F 6 ,r 5 1 ) (3.19)

) E 6 ; r 5 2 & 5 1 0

) E 6 & 2 P 3 ( F 6 ,r 5 2 ) (3.20)

Both are generalized eigenvalues of the operator H ^ I (H is the exact

Hamiltonian and I the identity on C 2) with generalized eigenvalue equal to
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E . 0. We want to determine the action of !T 6 on these vectors. We start

with the following identity, which has its origin in (2.6):

^ J 6 ) !T 7 ) E 7 ; r & 5 ^ E 7 ; r ) !T 6 ) J 6 & for all J 6 P F 6 ,r (3.21)

From (3.13), we obviously obtain

!T 6 5 6 1 0 AT 6

2 AT 6 0 2 (3.22)

Let us write

J 6 5 1 w 6

c 6 2 (3.23)

where w 6 , c 6 P F 6 . We shall study separately two cases: r 5 6 .

Take r 5 1 :

^ E 7 , r 5 1 ) !T 6 ) J 6 &

5 6 ( ^ E 7 ) , 0) 1 AT 6 c 6

2 AT 6 w 6 2
5 6 ^ E 7 ) AT 6 c 6 & 5 6 ^ c 6 ) AT 7 ) E 7 &

5 6 ^ c 6 ) E 6 & 5 6 ( w 6 , c 6 ) 1 0

) E 6 & 2 5 6 ^ J 6 ) E 6 , r 5 2 & (3.24)

This chain of identities along (3.2) yields

!T 7 ) E 7 ; r 5 1 & 5 6 ) E 6 ; r 5 2 & (3.25)

The double sign appears as the coefficient of ) E 6 , r 5 2 & only if we make

the choice !T 2 5 2 D ²
7 #D 6 . The choice !T 2 5 D ²

7 #D 6 replaces this

double sign in (3.25) by a plus sign.

Now take r 5 2 . An analogous calculation gives

!T 7 ) E 7 ; r 5 2 & 5 7 ) E 6 ; r 5 1 & (3.26)

where the double sign in the coefficient has the same origin. The choice

!T 2 5 D ²
7 #D 6 replaces it by a minus sign.

The next step is to define the Gamow vectors within this context and

obtain their images under time reversal. In a natural way, we have four

Gamow vectors:
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) f0; r 5 1 & 5 ) z 2
R ; r 5 1 & 5 1 ) f0 &

0 2 (3.27)

) f0; r 5 2 & 5 ) z 2
R ; r 5 2 & 5 1 0

) f0 & 2 (3.28)

) fÄ0; r 5 1 & 5 ) z* 1
R ; r 5 1 & 5 1 ) fÄ0 &0 2 (3.29)

) fÄ0; r 5 2 & 5 ) z* 1
R ; r 5 2 & 5 1 0

) fÄ0 & 2 (3.30)

These Gamow vectors are generalized eigenvectors of the operator H ^
I with eigenvalues zR for (3.27) and (3.28), and z*R for (3.29) and (3.30). We

can show the following:

!T 2 ) f0; r 5 1 & 5 2 ) fÄ0; r 5 2 & (3.31)

!T 2 ) f0; r 5 2 & 5 ) fÄ0; r 5 1 & (3.32)

!T 1 ) fÄ0; r 5 1 & 5 2 ) f0; r 5 2 & (3.33)

!T 1 ) fÄ0; r 5 2 & 5 ) f0; r 5 1 & (3.34)

The overall sign on the right-hand side correspond to the choice !T 2 5
1 D ²

1 #D 2 . For the other choice, all the overall signs on the right-hand side

must be changed.

Remark. The S operator is written in this context as S ^ I. Therefore,

it is a diagonal operator and Su,u8(E ) 5 ^ u ) S(E ) ) u8 & 5 S(E ) d u,u8.

4. MULTIPLE-POLE RESONANCES

4.1. Standard Case

If the analytically continued S-matrtix has a multiple pole of order n at

the points zR 5 ER 2 i G /2 and its complex conjugate z*R , new types of Gamow

vectors appear [3, 17]. In particular, we have n decaying Gamow vectors

) f0 & , ) f1 & , . . . , ) fn 2 1 & P 3 F 2 and n growing Gamow vectors ) fÄ0 & , ) fÄ1 & , . . . ,

) fÄn 2 1 & P 3 F + having the following properties:
(i) The functionals ) f0 & and ) fÄ0 & are the same as in the previous case

and have the same properties. In particular, they are generalized eigenvectors

of the total Hamiltonian with respective eigenvalues given by zR and z*R .

Their time evolution has been discussed in the Introduction.
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(ii) For the other functionals, we have

H ) fk & 5 zR ) fk & 1 k ) fk 2 1 & ; H ) fÄk & 5 z*R ) fÄk & 1 k ) fÄk 2 1 & (4.1)

Although these formulas are in principle valid for k 5 1, 2, . . . , n 2 1, we

can use them also for k 5 0, since then their second term on the right-hand

side vanishes. Thus, the restriction of H to the subspaces of 3 F 6 spanned

by these Gamow vectors has the typical form of a Jordan block matrix [17].

(iii) Their time evolution is given by

e 2 itH ) fk & 5 o
k

l 5 0 1 k

l 2 ( 2 it)k 2 le 2 itzR ) fl & (t . 0) (4.2)

and

e 2 itH ) fÄk & 5 o
k

l 5 0 1 k

l 2 ( 2 it)k 2 le 2 itz*R ) fÄ l & (t , 0) (4.3)

In order to obtain the action of the time reversal operators AT 6 on these

Gamow vectors, we need to recall some of their properties.

The vectors ) fk & P 3 F 2 are functionals on F 2 . They are defined as

follows [3, 17]: Let w 2 P F 2 and w 2 (E ) be its corresponding function in
*2

1 ù S ) R 1 , i.e., V 2 w 2 5 w 2 (E ). Then, the complex conjugate, [ w 2 (E )]*,

of w 2 (E ) as well as the complex conjugate of the derivatives,

F d k w 2 (E )

dE k G *
(4.4)

belong to *2
2 ù S ) R 1 . We define [3, 17]

^ w 2 ) fk & 5 F d k w +(E )

dE k G *

zR

(4.5)

i.e., the value of the Hardy function on the lower half-plane given by

F d k w +(E )

dE k G *
(4.6)

at the point zR. Note that this definition includes the usual one for k 5 0.

Remark. Here, we use the same notation, w 2 (E ), to denote the function

w 2 (E ) P *2
1 ù S ) R 1 and its unique extension of *2

1 ù S.

As we shall see, the formula [3]



Resonances and Time Reversal Operator in RHS 107

^ w 2 ) fk & 5 2
k!

2 p i #
`

2 `

[ w +(E )]*

(E 2 zR)k 1 1 dE (4.7)

is precisely the property we need to find the action of AT 2 on ) fk & .
For c + P F +, the mapping V+ gives a function V+ c + 5 c +(E ) P *2

2

ù S ) R 1 . On c +, the functional ) fÄk & P 3 F + gives

^ c + ) fÄk & 5 F d k c 2 (E )

dE k G *

z*R

(4.8)

As for ) fk & , the following property holds for ) fÄk & :

^ c + ) fÄk & 5
k!

2 p i #
`

2 `

[ c 2 (E )]*

(E 2 z*R )k 1 1
dE (4.9)

To obtain AT 2 ) fk & , we use the following identity [see (2.6)]:

^ c + ) AT 2 ) fk & 5 ^ fk ) A ²
T 2 c + & (4.10)

In order to compute (4.10), we need to know which is the function in

*2
2 ù S ) R 1 corresponding to A ²

T 2 c + through V 2 . We first need to recall that

A ²
T 2 5 AT+. According to (2.2), we have

V 2 AT+ c + 5 V 2 V ²
2 CV+ c + 5 C c 2 (E ) 5 [ c 2 (E )]* P *2

1 ù S ) R 1 (4.11)

Let us call h +(E ) : 5 [ c 2 (E )]* and h 2 5 V 2 1
2 h +(E ) P F 2 . The desired

function is h 2 (E ) and from the definitions, we immediately see that h 2 5
V 2 AT+ c +. Then,

^ fk ) A ²
T 2 c + & 5 ^ fk ) AT+ c + & 5 ^ AT+ c + ) fk & * 5 ^ h 2 ) fk & *

5 F 2
k!

2 p i #
`

2 `

[ h +(E )]*

(E 2 zR)k 1 1 dE G *

5
k!

2 p i #
`

2 `

h +(E )

(E 2 z*R )k 1 1
dE

5
k!

2 p i #
`

2 `

[ c 2 (E )]*

(E 2 z*R )k 1 1
dE

5 ^ c + ) fÄk & (4.12)

After this chain of identities, we obtain

^ c + ) AT 2 ) fk & 5 ^ c + ) fÄk & for all c + P F + (4.13)
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Thus,

AT 2 ) fk & 5 ) fÄk & (4.14)

Analogously, we get

AT+ ) fÄk & 5 ) fk & (4.15)

4.2. The Case e T 5 e I 5 1 (s Waves)

Everything goes as in the case of single-pole resonances. Therefore,

Eqs. (3.31)±(3.34) can be used, replacing f0 by fk.

Now, we shall obtain the action of the time reversal operator on the

time evolution semigroups. Let us define the evolution semigroups on the
duals 3 F 6 ,r as

0 6 (t) 5 8 6 ^ I 5 1 8 6 (t) 0

0 8 6 (t) 2 (4.16)

where t . 0 for 3 F 2 ,r and 8+(t) and t , 0 for 3 F +,r and 8 2 (t). This definition

is an immediate consequence of the time behavior for the elements of 3 F 6

[13] and the definitions of the duals 3 F 6 ,r. After (2.18) and (2.19), we have

!T 1 0 2 (t)!T 2 5 0+( 2 t), t . 0 (4.17)

!T 2 0+(t)!T 1 5 0 2 ( 2 t), t , 0 (4.18)

This result is obtained when we choose the minus sign for !T 2 as in (3.13).

If we do not make this choice, a minus sign appears in the right-hand side

of (4.17) and (4.18).

What is the physical meaning of the space doubling? In order to explore

it, let us consider the dual spaces

3 F +,r=+ 5 1
3 F +

0 2 ; 3 F 2 ,r= 2 5 1 0
3 F 2 2 (4.19)

The space 3 F +,r=+ includes all preparable states, which evolve forwardly

with time up to t 5 0. If F ++ P 3 F +,r=+, its time evolution is given by 0+(t)
F ++ with t , 0. If we write F ++ 5 (F +

0 ), we have

0(t)F ++ 5 1 8+(t)

0

0

8+(t) 2 1 F +

0 2 5 1 8+F
+

0 2 , t , 0 (4.20)

On the other hand, the space 3 F 2 ,r= 2 includes all preparable states that

evolve backward in time after t 5 0. In this case, if we call F 2 2 any element

of 3 F 2 ,r= 2 , we have that F 2 2 5 ( 0
F 2 ) with F 2 P 3 F 2 and
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0 2 ( 2 t)F 2 2 5 1 8 2 ( 2 t)

0

0

8 2 ( 2 t) 2 1 0

F 2 2 5 1 0

8 2 ( 2 t)F 2 2 , t . 0

(4.21)

Analogously, 3 F 2 ,r=+ includes all observables that evolve forward in

time after t 5 0 and 3 F +,r= 2 includes all observables that evolve backward

in time up to t 5 0.

Thus, the operator !T 6 transforms states that evolve (
forward

backward
) in time

into states evolving (
backward

forward
) in time, and observables that evolve (

backward

forward
) in

time into observables that evolve (
forward

backward
) in time.

APPENDIX: TIME REVERSAL

Textbooks in quantum mechanics usually define the time reversal opera-
tion in the position representation as C c (x, t) 5 c *(x, 2 t), where the star

denotes complex conjugation. One has to be careful with this notation to

understand what it really means. Following Wigner, time reversal is an

operation such that the following operations performed sequentially give

the identity:

time displacement by t 3 time reversal

3 time displacement by t 3 time reversal

If we denote the time reversal operator by C, a possible solution for it
would be C c (t) 5 c ( 2 t). However, this kind of operation is obviously linear.

The need for an antilinear time reversal operation has been nicely shown by

Wigner in the following terms: The above operations results in the identity

if and only if

time displacement by t 3 time inversion

5 time inversion 3 time displacement by 2 t

Now, let us consider a system for which the Hamiltonian has a complete

set of eigenvectors (for instance, the harmonic oscillator, the bound states of

the hydrogen atom, or any system formed by the bound states of the Hamilto-
nian if any). Then, for any state vector w , one has

w 5 o
n

an w n, where H w n 5 En w n (A.1)

Then, apply to it the time reversal operation and assume that it is linear.

Then, one has
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C w 5 o
n

anC w n (A.2)

Since [H, C] 5 0, C w n are also eigenvectors of the Hamiltonian with
the same eigenvalue En. Therefore, displacement by t 5 2 ( 2 t) on C w gives

o
n

ane
2 iEntC w n (A.3)

According to the above-mentioned rule, this should be equal to the result

of performing two operations: first the displacement by 2 t on w ,

o
n

ane
iEnt w n (A.4)

and then the time reversal operation C. If C were linear, we would have that

o
n

ane
iEntC w n (A.5)

which does not coincide with the expression given by (A.4). However, they

will coincide if C is defined as an antilinear operator. (The simplest antilinear

operation on a space of complex functions is the complex conjugation.)

Once we have shown that the time reversal operator must be antilinear,
let us proceed with our discussion, now in the energy representation. For the

sake of simplicity, we can assume that the Hamiltonian has simple spectrum

on R + : 5 [0, ` ) [this happens if, for instance, H is of the form H 5 p2/2m 1
V( ) r ) ) and we consider s waves only]. Then, H is the multiplication operator

by the energy E in the energy representation. Pick some pure state c (E).

Then apply to it, first, time inversion:

C c (E) 5 c *(E) (A.6)

where we have taken as the time reversal operator C the complex conjugation

(as Wigner does). Then, time displacement by t gives

e 2 itE c *(E) (A.7)

If we apply time inversion to (A.7), which is now equivalent to performing

the complex conjugation operation, we obtain

eitE c (E) (A.8)

Time displacement by 2 t on (A.8) finally gives

e 2 itEeitE c (E) 5 c (E) (A.9)

From here, one deduces that

C( c (E, t)) 5 C(e 2 itE c (E)) 5 eitE c *(E) (A.10)
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Here, eitE c *(E) is the result of applying time displacement by 2 t to

c *(E). Therefore, eitE c *(E) is what should be identified with the c *(E, 2 t)
[or c *2 t(E)] that appears in the textbooks. (Note that c *(E, 2 t) 5 eitE c *(E)
5 [e 2 itE c (E)]* 5 [ c (E, t)]*). The same can be argued with respect to the

coordinate representation, for which time reversal is represented by an antiuni-

tary operator CÄ : CÄ c (x) 5 c *(x). However, in the momentum representation,

the time reversal operator C8 behaves as C w (p) 5 w *( 2 p) 5 [ w ( 2 p)]*, since

the time inversion changes p into 2 p. Let c (x) be a pure state in the coordinate

representation; the corresponding state in the momentum representation is
given by

c Ã(p) 5 ^ c (p) : 5
1

2 p #
`

2 `

e 2 ipx c (x) dx (A.11)

Taking complex conjugation in (A.11), one gets

[ c Ã(p)]* 5 [^ c ]*(p) : 5
1

2 p #
`

2 `

eipx c *(x) dx 5
Ù

c *( 2 p) (A.12)

which gives

C8 c Ã(p) 5
Ù

CÄ c (p) Þ C8 5 ^CÄ ^ 2 1 (A.13)

where ^ and the caret denote the Fourier transform. In this sense, we see

that the Fourier transform and time reversal commute. We have in general
a situation like this. Assume that we are working in an arbitrary representation

and that the Hilbert space * supports this representation. Then, we define

the time reversal operator AT on * as

AT f 5 U 2 1CÄ f (x) (A.14)

where U is the unitary mapping carrying the space * into the space of

coordinate wave functions [which is in general of the form L2(I ), where I is

a measurable subset of R n for some n 5 1, 2, . . .] and f (x) 5 U f . Obviously,

AT 5 U 2 1CÄ U (A.15)

Now, let us denote f T : 5 AT f . Consider now that f (t) : 5 e 2 itH f and
call H8 the Hamiltonian in the coordinate representation, which means that

H8 5 UHU 2 1. One finds

AT f (t) 5 AT e 2 itHf 5 U 2 1CÄ e 2 itH8 f (x) 5 U 2 1eitH8 f *(x)

5 [U 2 1eitH8U]U 2 1CÄ f (x) 5 eitHAT f 5 AT f ( 2 t) 5 f T( 2 t) (A.16)

Thus, AT f (t) 5 f T( 2 t), which generalizes the equation C c (x, t) 5
c *(x, 2 t).
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Table I

e T e I UP AT

( 2 1)2j ( 2 1)2j 1 C

2 ( 2 1)2j ( 2 1)2j

1 1

0

0

2 1 2 1 0

2 C

C

0 2
( 2 1)2j 2 ( 2 1)2j

1 1

0

0

2 1 2 1 0

C

C

0 2
2 ( 2 1)2j 2 ( 2 1)2j

1 1 0

0 1 2 1 0

2 C

C

0 2

However, this is not the whole story. As mentioned in the Introduction
and used throughout this paper, Wigner [31, 32] realized that, when con-

structing projective representations of the PoincareÂgroup extended with time

inversion and parity, new possibilities for the time reversal operator exist.

These new forms for the time reversal operator are not independent of the

representation of the parity and imply a doubling of the space supporting the

representation (the space of states). We do not discuss this construction here,
but instead present a table with the four possibilities. The four choices are

characterized by two parameters that also appear among the parameters that

characterize the representations of the extended PoincareÂgroup. If UP is the

operator for parity and AT the time inversion operator and AI 5 UP AT , the

parameters e T and e I are defined as

A2
T 5 e TI; A2

I 5 e II (A.17)

Table I shows the four choices.
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